Drug target ontology to classify and integrate drug discovery data
نویسندگان
چکیده
BACKGROUND One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. However, only a small subset of potentially druggable targets has attracted significant research and development resources. The Illuminating the Druggable Genome (IDG) project develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug targets. A central component of the IDG program is a comprehensive knowledge resource of the druggable genome. RESULTS As part of that effort, we have developed a framework to integrate, navigate, and analyze drug discovery data based on formalized and standardized classifications and annotations of druggable protein targets, the Drug Target Ontology (DTO). DTO was constructed by extensive curation and consolidation of various resources. DTO classifies the four major drug target protein families, GPCRs, kinases, ion channels and nuclear receptors, based on phylogenecity, function, target development level, disease association, tissue expression, chemical ligand and substrate characteristics, and target-family specific characteristics. The formal ontology was built using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. CONCLUSIONS DTO was built based on the need for a formal semantic model for druggable targets including various related information such as protein, gene, protein domain, protein structure, binding site, small molecule drug, mechanism of action, protein tissue localization, disease association, and many other types of information. DTO will further facilitate the otherwise challenging integration and formal linking to biological assays, phenotypes, disease models, drug poly-pharmacology, binding kinetics and many other processes, functions and qualities that are at the core of drug discovery. The first version of DTO is publically available via the website http://drugtargetontology.org/ , Github ( http://github.com/DrugTargetOntology/DTO ), and the NCBO Bioportal ( http://bioportal.bioontology.org/ontologies/DTO ). The long-term goal of DTO is to provide such an integrative framework and to populate the ontology with this information as a community resource.
منابع مشابه
Modeling a semantic recommender system for medical prescriptions and drug interaction detection
Introduction: The administration of appropriate drugs to patients is one of the most important processes of treatment and requires careful decision-making based-on the current conditions of the patient and its history and symptoms. In many cases, patients may require more than one drug, or in addition to having a previous illness and receiving the drug, they need new drugs for the new illness, ...
متن کاملProteomics Applications in Health: Biomarker and Drug Discovery and Food Industry
Advancing in genome sequencing has greatly propelled the understanding of the living world, however, it is insufficient for full description of a biological system. Focusing on, proteomics has emerged as another large-scale platform for improving the understanding of biology. Proteomic experiments can be used for different aspects of clinical and health sciences such as food technology, biomark...
متن کاملProteomics Applications in Health: Biomarker and Drug Discovery and Food Industry
Advancing in genome sequencing has greatly propelled the understanding of the living world, however, it is insufficient for full description of a biological system. Focusing on, proteomics has emerged as another large-scale platform for improving the understanding of biology. Proteomic experiments can be used for different aspects of clinical and health sciences such as food technology, biomark...
متن کاملDrug Target Prediction for Colorectal Cancer by Combining Ontology and Network Approaches
Drug discovery is a time-consuming and expensive process, especially for complex diseases. In the last decade, targetbased methods for drug discovery have become more common and effective comparing to traditional observation-based drug discovery. Recently, computational approaches for target prediction and drug repurposing have become more common and effective compared to traditional observatio...
متن کاملSurvey on Perception of People Regarding Utilization of Computer Science & Information Technology in Manipulation of Big Data, Disease Detection & Drug Discovery
this research explores the manipulation of biomedical big data and diseases detection using automated computing mechanisms. As efficient and cost effective way to discover disease and drug is important for a society so computer aided automated system is a must. This paper aims to understand the importance of computer aided automated system among the people. The analysis result from collected da...
متن کامل